
84 JFQ / Summer 1994

W e are witnessing an astonish-
ing change in modern war.
The volume of space in
which coordinated military

action takes place has greatly expanded,
tending towards the global, while the time
available for decisionmaking has shrunk,
pushing the human operator increasingly
out of the control loop. These tendencies
first became apparent in air operations, but
are now encompassing an increasing range
of land, sea, space, and special operations,

all linked or capable of being linked digitally
as never before. The vital medium of linkage
is software 1 which exists in a seamless and
hidden terrain: logic. Although it underpins
a remarkable and growing range of military
activities, software has been regarded as the
plaything of engineers or an enhancement
to military hardware which lacked anything
of its own worthy of exploitation.

Hidden within weapons systems, and
fully comprehensible only to engineers or
specialists, the growing role of software in
modern warfare is easy to overlook. Yet soft-
ware is more than an engineering tool. It is
an operational entity and weapon in its own
right that needs to be exploited to maxi-
mum effect like any other. It supplants an
increasing range of military functions previ-
ously undertaken by combatants. On the

Software constitutes the digital linkage among land, sea, air, space, and special operations forces, a capability
that will increasingly outdistance human agents who will have to master and use it in wars of the future. It
will power the flow of data, fuse information into images in command centers, analyze intelligence, and
direct weapons against an enemy. Battlespace will expand as the time to make decisions contracts. The
Armed Forces will rely preeminently upon near real-time adjustments to the shifting sands of war, on the
ability to strike at pivotal points in small windows of opportunity. Emerging operational doctrine requires
streamlined and flexible communications software that is highly dependable. Drawing on the seamless
terrain of logic will enable the joint warfighter to perfect the concept of cooperative weaponry.

Summary

The views expressed in this article are the author’s and do not necessarily represent
those of either the Ministry of Defence or Her Majesty’s Government.

SOFTWARE
WARFARE
The Militarization
of Logic
By P E T E R C. E M M E T T

FORSCOM Automated
Intelligence Support
System (FAISS).

U
.S

.
A

rm
y

(S
te

ve
 L

am
b

er
t)

1405Emmett 10/7/97 9:33 AM Page 84

Summer 1994 / JFQ 85

ground and in the air, from beam-steering
radars to intelligence-gathering platforms,
software drives many increasingly sophisti-
cated sensors with capabilities that would
otherwise be limited or not available. All
types of information flows via the software-
driven nodes of communications networks.
It is fused and transformed into images at
command positions and may be further ana-
lyzed by software. Action against an enemy
is conducted using weapons whose perfor-
mance is also likely to be highly dependent
on software.

With the power and immense potential
of software as the starting point, military
technology is on the threshold of a leap for-
ward comparable with, if not greater than,
revolutions that brought about the mecha-
nization of land forces and development of
airpower. The paradox and inadequacy of
current thinking is this: while matériel that
plays a part in war is fully militarized and
exploited according to its capabilities, the
potential of software is left out of the opera-
tional mainstream. The means of introduc-
ing the military functions of software into
the framework of formal doctrine must now
become our highest operational priority.

Earlier in this century the great task of
military theorists was to reconcile war with
scientific and technological innovation.
That difficult task, born of the senseless
slaughter of World War I, was marked by a
slow acceptance of change.2 Then World War
II, when enemies of civilization effectively
incorporated mechanization into their
warfighting doctrine, brought further catas-
trophe to the world and near total defeat for
the Allies. At the close of the 20th century,
military science has an immense new chal-
lenge equally vital to the performance in
battle of those Western nations to whom
this still matters—the militarization of logic.

Software Military Functions
The whole art of military effectiveness

lies in the ability to move cooperating forces
across a theater of operations in order to
strike at the decisive points, adapting as

rapidly as possible to the ever-changing and
unpredictable fortunes of war. As a process
this can be broken down into three basic ele-
ments: representation of the position, analy-
sis of positional information and direction of
firepower, and action of all types against the
enemy. In essence, war is a cycle of “see,
think, and strike” in which adaptability, in-
telligence, speed, and cooperation are vital
ingredients. Software has now become so
closely involved at all stages in this cycle that
any analysis of software military functions
might examine, as a reasonable starting
point, the degree to which the logical ana-
logues of each vital ingredient can be embod-
ied within software operational doctrine.

Logical Mobility
If the analogue of firepower is process-

ing power, then the analogue of movement
in logical terrain is change—not only in the
information that flows within the terrain,
but also change in its logical features: the
application and content of the programs
fielded. Processing power designed to serve a
particular tactical objective at one time may
thus fail to serve it at another. To be effec-
tive, the required functionality must be
adaptable. It must be logically mobile.

The tendency today is to build ever-in-
creasing sophistication into military soft-
ware. Every major and minor function gets
coded, but the benefits of program sophisti-
cation are negated if it limits adapting pro-
grams in rapidly changing tactical environ-
ments. The relationship between size and
adaptability is not a straightforward one. It
depends on what is being changed, the
number of affected program units, and the
modularity of the code. The general conse-
quences of program size must, however, be
recognized and for every project its specific
impact on defined functional areas must be
assessed in terms of basic tactical criteria.

The Persian Gulf War resulted in emer-
gency programming to meet unexpected
challenges. These included software changes
in thermal imaging and laser designator
pods installed on aircraft by the Royal Air
Force 3 and Firefinder weapon-locating radar
adapted to a Scud missile detection role by
the U.S. Army.4 Such ad hoc program
changes, implemented in time to be put to
tactical use, represent the beginnings of
what will undoubtedly be an important facet

E m m e t t

Squadron Leader Peter C. Emmett, RAF, is posted
to the Defence Research Agency, Great Malvern.
Previously he was assigned to the Aircraft and
Armament Experimental Establishment,
Boscombe Down.

1405Emmett 10/7/97 9:33 AM Page 85

86 JFQ / Summer 1994

of future software operational doctrine,
namely, tactical programming. This may be
defined as transforming assets in logical ter-
rain to deal effectively with the challenges of
the moment. As software increasingly pene-
trates the tactical level, so will the need to
exploit the adaptability characteristic of soft-
ware. A compromise will be required be-
tween program sophistication, on one hand,
and adaptability, on the other. Such a com-
promise is comparable with that between ar-
mored firepower and mobility. In this criti-
cal tradeoff software engineering is failing
utterly to serve real military needs.

In the early days of
computer programming the
bulk and limited capacity of
available digital storage tech-
nologies were severe con-
straints on program design
and, hence, on the sophisti-
cation of system require-

ments. It also led programmers to find the
slickest means of horning the required func-
tionality into the available memory space, and
favored efficient but highly obscure languages
and programming techniques. Such programs
were difficult to comprehend, but at least they
were bounded and the implemented function-
ality was reduced to the operationally essen-
tial. With the exponential growth in memory
capacity from the 1960s onwards, program
size simply grew to fill available memory
space. With diverse programming languages
and poor development techniques, the need
arose for programs in standard high-level lan-
guages in a framework of agreed software en-
gineering discipline.5 And as software engi-
neering leapt ahead leaving operational staffs
in a void of subservient incomprehension, it
effectively hijacked the procurement process.

The quantity of software generated for
military equipment today staggers the imagi-
nation. Freed from the bounds of computer
memory size and aided by a growing
plethora of development tools, program-
ming teams routinely churn out lines of
code by the millions or tens of millions. At
the outset of a project, operational staffs are
beguiled into building every conceivable so-
phistication into a project requirement, sup-
ported by a seemingly limitless capacity of

engineers to generate the required code. In
too many cases they are oblivious to devel-
opment risks, maintenance costs, and pro-
gram adaptability. The result is that the ter-
rain of modern combat is filled by
non-adapting dinosaurs—monsters of func-
tionality bloated by excess requirements, the
essential along with the unfiltered trivial.
Such weapons will have no place on the log-
ical battlefield of the future.

The latest rash of problems with the
new generation of software-intensive fighter
aircraft6 should give pause for thought on
the achievements of software engineering in
the cold light of the military balance sheet.
It is not that software cannot bring immense
new capabilities. Rather, it is a question of
placing the untamed power of software
within a doctrinal harness to obtain effective
military benefit from the capabilities. A pri-
mary task of doctrine is thus to impose a
strict review process on the military func-
tions that ought to be trusted to code and
on the total extent of code that may be gen-
erated. The appropriate maxim might be: If
it doesn’t win wars, don’t code it. The cen-
tral aim must be to strike the right balance
between war-fighting capabilities and future
demands to alter those capabilities when the
need arises.

The ideal adaption is one that can be
generated in real-time during the course of
battle. This is the domain of Artificial Intelli-
gence (AI) that can be regarded as the ulti-
mate in logical mobility. Though it is un-
likely that software adaption can ever be
uniquely of this form, software operational
doctrine must embrace AI as a key strategic
technology.

Battlefield Real-Time
The speed and complexity of modern

conflict are leading inexorably to trust in a
growing range of functions in the “see,
think, and strike” loop to automated actions
governed by software. A simple example is
the automatic fire mode of guided
weaponry, such as the Patriot anti-missile
system, in which the linkage among sensor,
threat analysis, and fire decision (with op-
tional human override) is fully computer-
ized. On the wider battlefield, if command
and control decisions are to be made in tac-
tically meaningful time, the sophistication
of modern sensors and the vast quantities of

S O F T W A R E W A R F A R E

as software penetrates the
tactical level, so will the
need to exploit the
adaptability of software

1405Emmett 10/7/97 9:33 AM Page 86

Summer 1994 / JFQ 87

information they generate means that the
battlefield analysis process must itself be in-
creasingly entrusted to software. An im-
mense research effort in this area is already
generating the tools of the future, such as
the “Warbreaker” data base for finding time-
critical targets being developed by the Joint
Intelligence Development Staff.7 Software-in-
tensive weapons thus generate the need for
speed in threat assessment and, as tactical
activity in war speeds up, the requirement
for speed of decision generates the further
need to trust intelligent systems. The human
element will always be present, but it is
being progressively swamped, marginalized,
and obliged to depend on capabilities and
flexibilities written into command and con-
trol software at the outset of a conflict.

Preparation and innate adapt-
ability, achieved by sound doc-
trine, are the keys to future
combat effectiveness.

The greatest changes in
the practice of warfare are
likely yet to come. On the bat-

tlefields of the present era, software is om-
nipresent but exists in each case as a servant
of some well-contained command and con-
trol function. Intercommunication among
software elements may take place, but the
human combatant remains the principal
means of linking the “see, think, and strike”
loop. It is important to recognize the strong

temporal dependency of any
threat and that the more effec-
tively an opponent operates in
logical terrain, the faster the
threat will change. The human
link becomes ever more the
weakest, and inexorably auto-
matic fire modes will replace
slower manual processes as this
becomes technically feasible.
However, this cannot be a lo-
calized development confined
to weapon software in isolation
from other elements on the
battlefield. In order to exploit
the speed characteristic of soft-
ware, there must be direct link-
age and control back to the
command and control position.
Only here can the full picture
be assessed and the most effec-
tive strike modes be identified.

The central aim is, as always, to coordinate
diverse forces to strike most effectively at the
decisive points at moments of vulnerability.

With many competing demands for in-
formation and direction, a mechanism for
resolving conflicts and allocating priorities
will be essential. The analogy with the prob-
lem of real-time control in a multi-tasking
engineering environment—well understood
by the software engineer—is both striking
and perfect. The logical battlefield is
steadily evolving into a single, massive, real-
time system in which human activity repre-
sents a subset of the total process. What is
presently lacking is a battlefield real-time
executive that is able to resolve conflicts
and allocate operational priorities between
competing and ever-changing demands on
military hardware use. This resource must
be able to employ the results of sensing and
analysis to generate continually the opti-
mum instantaneous strike posture for each
weapon. Weapons would be assigned singly
or by group and switched between local and
autonomous control as necessary. The ob-
ject would be to direct and coordinate avail-
able firepower at the weakest areas as soon
as the moments of opportunity arose. The ra-
tionale of battle would be embedded in a

E m m e t t

software-intensive
weapons generate the
need for speed in threat
assessment

H–64 Apache assault
helicopter.

U
.S

.
A

ir
Fo

rc
e

(D
av

id
 M

cL
eo

d
)

1405Emmett 10/7/97 9:33 AM Page 87

88 JFQ / Summer 1994

suite of analysis pro-
grams on continual
call to the battlefield
executive. An under-
lying operational
doctrine must be
wedded to battlefield
intelligence here in
order to generate spe-
cific operational di-
rectives. Here as well,
operational flexibility
must be maximized
through program
adaptability. The bat-
tlefield executive sys-
tem would be nested
in higher order exec-
utive programs. At
the highest executive

level would reside the strategic rationale
from which immediate tactical priorities
would be derived.

The exploitation of the software charac-
teristics of speed, intelligence, and adaptabil-
ity can be traced in the future battlefield sys-
tem alluded to above. In the strict sense that
the system would be centrally coordinated, a
type of logical cooperation would exist. But
combatants can also cooperate without re-
course to higher command, an activity with
no logical analogue as yet.

Logical Cooperation
Cooperation among software-driven

weapons is a potent tactical concept. It is the
artillery on the logical battlefield just wait-
ing to be discovered. Totally overlooked in
old ideas about war, it is the most com-

pelling evidence of the need to alter
perceptions of the nature of mod-
ern warfare.

The capabilities and potential of
cooperative weaponry can be illus-
trated by the example of a stand-off
tactical air-to-ground missile. Its re-

quirements and specifications must be con-
sidered in terms of defined targets, for no sin-
gle design could ever cope with the myriad
of possible ground targets. For instance, con-
crete bunkers may be identified as the princi-
pal targets. A requirement to penetrate a
given thickness of concrete will then be spec-
ified and the missile’s body and warhead de-
signed accordingly. Such a weapon will be

less effective in roles outside the design pa-
rameters, such as area destruction of build-
ings or blast attack against scattered ground
targets. By contrast consider the many possi-
ble modes of operation for a group of cooper-
ating air-to-ground missiles. Under the con-
trol of a coordinating software, resource
options would be open to attack in sequence
or simultaneously and at one location or
many. The results of an attack could also be
employed in selecting targets for follow-on
attacks, the selections being made instanta-
neously (real-time) by the directing software.
Simultaneous or closely sequenced attacks on
a single location would tend to be effective
against hardened targets, while sequenced
strikes against buildings could be employed
until a desired effect was achieved. The many
possible combinations could be selected ei-
ther on a self-organizing basis or in response
to directives from a central command and
control position.

Weapons would attack in groups and act
as cohesive entities, adapting to the charac-
teristics of any threat and wrapping them-
selves around it at the weakest points. The
significant benefits of logical cooperation
would be greatly improved flexibility in
weapon design and use, much greater collec-
tive destructive effect, and a potentially
lower detection threshold achieved through
the ability to disperse in defense and swarm
during attack. A low detection threshold
would favor developing small weapons. The
joint applications of logical cooperation are
as diverse as war itself, from air combat to
undersea mine warfare. Its exploitation is
likely when a need arises to apply force with
maximum economy at times and places that
will make an operational difference.

The Operational-Engineering
Relationship

The role of doctrine is to serve as a guide
to action, but software operational doctrine
raises special problems of application be-
cause of the sheer complexity and esoteric
nature of software. To be applied effectively,
the relationship between the operational
and engineering domains of military soft-
ware development has to be clear.

Unbounded software production has led
to project overruns, escalating costs, and

Soldier Integrated
Protective Ensemble
(SIPE) with image
intensification and
thermal sight, laser
aiming light, and Load
Bearing Component
for computer or micro-
climate conditioning.

U
.S

.
A

rm
y

(S
te

ve
 L

am
b

er
t)

cooperation among
software-driven
weapons is a potent
tactical concept

1405Emmett 10/7/97 9:33 AM Page 88

Summer 1994 / JFQ 89

products that fail to meet design specifica-
tions. These widely recognized problems
have been described as the “software crisis,”
and solutions have repeatedly been sought
using a software engineering approach.
However, the role of the engineer is to de-
liver on a request, not to determine its na-
ture and scale. The crisis stems not uniquely
from bad engineering but ultimately from
inappropriate and anachronistic procure-
ment philosophies that have failed to adapt
to the peculiar difficulties of software devel-
opment. In the military sphere, the way out
of the crisis must be sought through opera-
tional doctrine that, by identifying the mili-
tary functions of software, harnesses and di-
rects the power of software within a
coherent procurement rationale. Software
operational doctrine will take years to estab-
lish but its relationship with software engi-
neering may be simply stated. The purpose
of software engineering is to maintain the
operational capacity to deliver and support
the new or altered functionality requested
by the user, in accordance with operationally

defined criteria. The
role of software op-
erational doctrine is
to determine the
scale, content, and
operational quality
of what ought to be
requested. Thus this
doctrine must not
only be imposed
firmly upon soft-
ware engineering at
all stages of project
development, but it
must also unhesi-
tatingly interfere in

the methodologies employed in software en-
gineering. Software production is an opera-
tional issue.

As an example of the strategic insight
that may be obtained through software oper-
ational doctrine, consider the need to estab-
lish, through doctrine, a set of criteria for
operational quality. Operational quality has
many facets but includes the frequent need
to trust software to carry out its functions re-
liably. Degrees of required reliability are usu-
ally expressed in terms of the safety or mis-
sion criticality of program functions.8 Such

classifications are appropriate when pro-
grams undertake well defined and compart-
mentalized support roles in a weapon or sys-
tem and thus can be segregated effectively
from less critical software. But as the role of
operational software widens and is utilized
more as a weapon in its own right, forging
multiple and fast-changing linkages in fluid
tactical environments, the distinctions be-
tween safety critical and non-safety critical
software will become increasingly meaning-
less. Given the unpredictability of war, the
importance of any single unit of code can-
not be predetermined. This leads to the need
to treat all operational software on the same
basis and to the concomitant demand for
performance reliability that is as near abso-
lute as possible. Only mathematical proof
can deliver such levels of assurance.

Processes by which programs may be
demonstrated to be correct by mathematical
analysis are termed Formal Methods (FM).
These methods take many forms, but an im-
portant one is the capture of informally con-
ceived requirements as a formal, mathemati-
cally describable specification. This is an
intensive manual process that now can only
be done by a limited number of specialists.
Once a formal specification has been de-
fined, however, the code generated may be
analyzed with near absolute rigor, and a
high level of trust may be placed on pro-
gram performance.

Defining a formal specification has an-
other potential benefit that future military
leaders must fully grasp: it is a major step to-
wards automatic code generation.9 It may
take a strong measure of operational aware-
ness to advance the science of FM, just as ar-
mored warfare led to advances in metallurgy
and mechanics, but achieving automatic
code generation would represent a strategic
asset of the highest order. Widespread use of
FM and automatic code generation would
lead to a major shift in the manual effort of
programming (still required in hardware in-
terfaces) towards the equally manual process
of formal requirements capture. The major
strategic gain would be one of greatly en-
hanced logical mobility through the ability
to convert rapidly an informally conceived
but immediate tactical need in a reliable bat-
tlefield program.

E m m e t t

Flight simulator show-
ing Forward-Looking
Infrared Radar (FLIR)
image from Target
Acquisition Designation
System (TADS).

U
.S

.
A

rm
y

1405Emmett 10/7/97 9:33 AM Page 89

90 JFQ / Summer 1994

Automatic code generation would not,
however, mean reducing the personnel re-
quirement for generating military code and
may well increase it. What it would do is
alter radically the pattern of personnel use,
both in operations and support. Opera-
tionally, the two principal roles would be
control over operational program configura-
tion and the continuous definition of infor-
mal software requirements. In the support
area requirements would be captured for-
mally by a team of dedicated specialists and
converted into reliable code for immediate
use in the theater of operations.

The organizational expression of the re-
lationship between software engineer and
combatant must also be a result of software
operational doctrine, born of the need to en-
sure fast and effective cooperation between

the support and operational
areas of software combat.
Viewed in this way the soft-
ware engineer-combatant re-
lationship may be compared
with the well established re-

lationship between field service teams and
armored combat units. Both are concerned
with the maintenance of field mobility,
whether physical or logical.

The Future Battlefield
That software is a weapon in its own

right is the justification and foundation of
software operational doctrine. Winning wars
must be the overriding criterion of all soft-
ware development. There is no room for ex-
cess baggage in software warfare. The lum-
bering monsters of code on the nascent
logical battlefields of today must give way to
lean, adaptable, and communicative soft-
ware that undertakes well-defined functions
in an all-embracing strategic system.

Starting with the military prerequisites
of adaptability, intelligence, speed, and coop-
eration, software operational doctrine has
been considered in terms of logical ana-
logues. Derived concepts of logical mobility,
battlefield real-time, and logical cooperation
have also been identified as a basis for fur-
ther doctrinal development. From doctrine
to practice, through a clearly defined opera-
tional-engineering relationship, arise require-
ments for speed in software development
and absolute trust in operational software.

The idea of cooperative weaponry stems
from considering software as a weapon in its
own right, as opposed to a tool of particular
hardware performance requirements. The
technology for putting logical cooperation
into practice has been available for many
years. The missing ingredient has been sys-
tematic thinking to illuminate the strange
new terrain on which the military of the
next century will undoubtedly operate. The
concept of cooperative weaponry surprised
many when it was introduced in 1992. As the
illumination of this new terrain increases it is
safe to assume that logical cooperation will
not be the last surprise to be found. JFQ

N O T E S

1 Peter C. Emmett, “Software Warfare: The Emerging
Future,” The RUSI Journal, vol. 137, no. 6 (December
1992), p. 56.

2 Robert H. Larson, The British Army and the Theory of
Armored Warfare, 1918–1940 (Newark: University of
Delaware Press, 1984).

3 P. Jackson, “TIALD Designated a Success,” Royal Air
Force Yearbook Special (1991), p. 33.

4 “Trashing Iraqi Scud Sites Shows Firefinder’s Met-
tle,” Signal, vol. 45, no. 12 (August 1991), p. 27.

5 Barry W. Boehm, Software Engineering Economics
(Englewood Cliffs, N.J.: Prentice-Hall, 1981).

6 D. Learmont, “Report Challenges Gripen Controls,”
Flight International (October 25–31, 1993), p. 5; Charles
Bickers, “Critical Paths: Who’s to Blame When the Tech-
nology Fails?” Jane’s Defence Weekly, vol. 20, no. 19
(November 6, 1993), p. 24; and A. Jeziorski, “Eu-
rofighter First Flight Pushed Into Next Year,” Flight Inter-
national (October 13–19, 1993), p. 4.

7 R. Ropelewski, “Team Helps Analysts Cope with
Data Flood,” Signal, vol. 47, no. 12 (August 1993), p. 42.

8 United Kingdom, Ministry of Defence, “The Pro-
curement of Safety-Critical Software—Defence Equip-
ment” (Interim Defence Standard 00–55, Part 1: Require-
ments, Issue 1.5, April 1991); and RTCA/EUROCAE,
“Software Considerations in Airborne Systems and
Equipment Certification” (DO–178B, 1993).

9 See F.L. Bauer, “The Wide Spectrum Language
CIP–L,” Munich project CIP, Computer Science, vol. 1
(1985), p. 183; and K.C. Lano, “Validation Through Re-
finement and Execution of Specifications” (REDO pro-
ject document 2487–TN–PRG–1041, August 1990).

S O F T W A R E W A R F A R E

winning wars must be the
overriding criterion of all
software development

READERS who want to share their thoughts
on “Software Warfare” with the author may
write to him directly at:

Defence Research Agency,
St. Andrew’s Road,
Great Malvern,
Worcestershire WR14 3PS
U.K.

1405Emmett 10/7/97 9:33 AM Page 90

